Comparison with Pareto Analysis¶
How ASCICat relates to Pareto frontier methods.
Overview¶
| Aspect | Pareto | ASCICat |
|---|---|---|
| Output | Non-dominated set | Ranked list |
| Preferences | Not required | Explicit weights |
| Comparability | Within dataset | Across studies |
| Final selection | Subjective | Deterministic |
Pareto Frontier¶
A solution is Pareto-optimal if no other solution is better on all objectives.
Complementary Methods¶
Pareto First, ASCI Second¶
- Identify Pareto-optimal catalysts
- Apply ASCI ranking within Pareto set
- Get prioritized list of non-dominated solutions
# Find Pareto-optimal
pareto_mask = is_pareto_optimal(objectives)
pareto_results = results[pareto_mask]
# Rank within Pareto set
pareto_ranked = pareto_results.sort_values('ASCI', ascending=False)
Validation¶
Top ASCI catalysts should be predominantly Pareto-optimal:
- If not → scoring functions may be miscalibrated
- Typical overlap: 80-95% of top 100
When to Use Each¶
Use Pareto When:¶
- Exploring trade-off space
- Stakeholders disagree on priorities
- No clear weight rationale
- Generating options for discussion
Use ASCI When:¶
- Priorities can be quantified
- Need single prioritized list
- Cross-study comparison needed
- Reproducibility required
Empirical Observations¶
From HER catalyst screening:
| Metric | Value |
|---|---|
| Total catalysts | 48,312 |
| Pareto-optimal | ~2,000 (4%) |
| Top 100 ASCI in Pareto | ~90% |
| Top 10 ASCI in Pareto | ~100% |
Key Insight¶
Complementarity
ASCICat and Pareto methods are complementary, not competing.
- Pareto shows the possible trade-offs
- ASCI provides actionable priorities
References¶
- Miettinen, K. Nonlinear Multiobjective Optimization (Springer, 1998)
- Ehrgott, M. Multicriteria Optimization (Springer, 2005)